Haileybury Turnford Maths Bridging Work: Examples

Expanding brackets and simplifying expressions

Key points

- When you expand one set of brackets you must multiply everything inside the bracket by what is outside.
- When you expand two linear expressions, each with two terms of the form *ax* + *b*, where *a* ≠ 0 and *b* ≠ 0, you create four terms. Two of these can usually be simplified by collecting like terms.

Examples

Example 1 Expand 4(3x - 2)

4(3x-2) = 12x - 8	Multiply everything inside the bracket
	by the 4 outside the bracket

Example 2 Expand and simplify 3(x + 5) - 4(2x + 3)

3(x + 5) - 4(2x + 3)	1 Expand each set of brackets
= 3x + 15 - 8x - 12	separately by multiplying $(x + 5)$ by 3
= 3 - 5x	and $(2x + 3)$ by -4
	2 Simplify by collecting like terms: 3x - 8x = -5x and $15 - 12 = 3$

Example 3 Expand and simplify (x + 3)(x + 2)

(x + 3)(x + 2) = $x(x + 2) + 3(x + 2)$	1 Expand the brackets by multiplying $(x + 2)$ by x and $(x + 2)$ by 3
$= x^2 + 2x + 3x + 6$	
$= x^2 + 5x + 6$	 2 Simplify by collecting like terms: 2x + 3x = 5x

Example 4 Expand and simplify (x - 5)(2x + 3)

(x-5)(2x+3) = x(2x+3) - 5(2x+3)	1 Expand the brackets by multiplying $(2x + 3)$ by x and $(2x + 3)$ by -5
$= 2x^{2} + 3x - 10x - 15$ $= 2x^{2} - 7x - 15$	2 Simplify by collecting like terms: 3x - 10x = -7x

Surds and rationalising the denominator

Key points

- A surd is the square root of a number that is not a square number, for example $\sqrt{2}, \sqrt{3}, \sqrt{5}$, etc.
- Surds can be used to give the exact value for an answer.

•
$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

•
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

- To rationalise the denominator means to remove the surd from the denominator of a fraction.
- To rationalise $\frac{a}{\sqrt{b}}$ you multiply the numerator and denominator by the surd \sqrt{b}
- To rationalise $\frac{a}{b+\sqrt{c}}$ you multiply the numerator and denominator by $b-\sqrt{c}$

Examples

Example 1 Simplify $\sqrt{50}$

$\sqrt{50} = \sqrt{25 \times 2}$	 Choose two numbers that are factors of 50. One of the factors must be a square number
$=\sqrt{25} \times \sqrt{2}$	2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
$=5 \times \sqrt{2}$	3 Use $\sqrt{25} = 5$
$=5\sqrt{2}$	

Example 2 Simplify $\sqrt{147} - 2\sqrt{12}$

$\sqrt{147} - 2\sqrt{12}$ $= \sqrt{49 \times 3} - 2\sqrt{4 \times 3}$	1 Simplify $\sqrt{147}$ and $2\sqrt{12}$. Choose two numbers that are factors of 147 and two numbers that are factors of 12. One of each pair of factors must be a square number
$=\sqrt{49}\times\sqrt{3}-2\sqrt{4}\times\sqrt{3}$	2 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$
$=7\times\sqrt{3}-2\times2\times\sqrt{3}$	3 Use $\sqrt{49} = 7$ and $\sqrt{4} = 2$
$=7\sqrt{3}-4\sqrt{3}$	
$=3\sqrt{3}$	4 Collect like terms

Example 3 Simplify $(\sqrt{7} + \sqrt{2})(\sqrt{7} - \sqrt{2})$

$ (\sqrt{7} + \sqrt{2})(\sqrt{7} - \sqrt{2}) = \sqrt{49} - \sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7} - \sqrt{4} $	1 Expand the brackets. A common mistake here is to write $(\sqrt{7})^2 = 49$
= 7 – 2	2 Collect like terms:
= 5	$-\sqrt{7}\sqrt{2} + \sqrt{2}\sqrt{7}$ $= -\sqrt{7}\sqrt{2} + \sqrt{7}\sqrt{2} = 0$

Rationalise $\frac{1}{\sqrt{3}}$

$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$	1 Multiply the numerator and denominator by $\sqrt{3}$
$=\frac{1\times\sqrt{3}}{\sqrt{9}}$	2 Use $\sqrt{9} = 3$
$=\frac{\sqrt{3}}{3}$	

Example 5	Rationalise and simplify	$\frac{\sqrt{2}}{\sqrt{12}}$
-----------	--------------------------	------------------------------

$\frac{\sqrt{2}}{\sqrt{12}} = \frac{\sqrt{2}}{\sqrt{12}} \times \frac{\sqrt{12}}{\sqrt{12}}$	1 Multiply the numerator and denominator by $\sqrt{12}$
$=\frac{\sqrt{2}\times\sqrt{4\times3}}{12}$	2 Simplify $\sqrt{12}$ in the numerator. Choose two numbers that are factors of 12. One of the factors must be a square number
$=\frac{2\sqrt{2}\sqrt{3}}{12}$	3 Use the rule $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$ 4 Use $\sqrt{4} = 2$
$=\frac{\sqrt{2}\sqrt{3}}{6}$	5 Simplify the fraction: $\frac{2}{12}$ simplifies to $\frac{1}{6}$

Example 6	Rationalise and simplify $\frac{3}{2+\sqrt{5}}$		
	$\frac{3}{2+\sqrt{5}} = \frac{3}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$	1	Multiply the numerator and denominator by $2 - \sqrt{5}$
	$=\frac{3\left(2-\sqrt{5}\right)}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}$	2	Expand the brackets
	$=\frac{6-3\sqrt{5}}{4+2\sqrt{5}-2\sqrt{5}-5}$	3	Simplify the fraction
	$= \frac{6-3\sqrt{5}}{-1}$ $= 3\sqrt{5}-6$	4	Divide the numerator by −1 Remember to change the sign of all terms when dividing by −1

Rules of indices

Key points

• $a^m \times a^n = a^{m+n}$

•
$$\frac{a^m}{a^n} = a^{m-n}$$

• $(a^m)^n = a^{mn}$

•
$$a^0 = 1$$

• $a^{\frac{1}{n}} = \sqrt[n]{a}$ i.e. the *n*th root of *a*

•
$$a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$$

•
$$a^{-m} = \frac{1}{a^m}$$

Examples

Example 1 Evaluate 10⁰

equal to 1

Example 2 Evaluate $9^{\frac{1}{2}}$

$9^{\frac{1}{2}} = \sqrt{9}$ $= 3$	Use the rule $a^{\frac{1}{n}} = \sqrt[n]{a}$

Example 3 Evaluate $27^{\frac{2}{3}}$

2

$27^{\frac{2}{3}} = (\sqrt[3]{27})^2$	1 Use the rule $a^{\frac{m}{n}} = \left(\sqrt[m]{a}\right)^m$
$= 3^{2}$ = 9	2 Use $\sqrt[3]{27} = 3$

Example 4 Evaluate
$$4^{-2}$$

$$\begin{cases}
4^{-2} = \frac{1}{4^{2}} \\
= \frac{1}{16}
\end{cases}$$
1 Use the rule $a^{-m} = \frac{1}{a^{m}}$
2 Use $4^{2} = 16$
Example 5 Simplify $\frac{6x^{5}}{2x^{2}}$

$$\begin{cases}
\frac{6x^{5}}{2x^{2}} = 3x^{3} \\
\frac{6 \div 2}{2x^{2}} = 3x^{3}
\end{cases}$$

$$\begin{cases}
6 \div 2 = 3 \text{ and use the rule } \frac{a^{m}}{a^{n}} = a^{m-n} \text{ to give } \frac{x^{5}}{x^{2}} = x^{5-2} = x^{3}
\end{cases}$$
Example 6 Simplify $\frac{x^{3} \times x^{5}}{x^{4}} = \frac{x^{8}}{x^{4}}$

$$\begin{cases}
\frac{x^{3} \times x^{3}}{x^{4}} = \frac{x^{3+5}}{x^{4}} = \frac{x^{8}}{x^{4}} \\
= x^{8-4} = x^{4}
\end{cases}$$
1 Use the rule $a^{m} \times a^{n} = a^{m+n}$

Example 7 Write $\frac{1}{3x}$ as a single power of x

$$\begin{cases}
\frac{1}{3x} = \frac{1}{3}x^{-1} \\
\frac{1}{3x} = \frac{1}{3}x^{-1}
\end{cases}$$
Use the rule $\frac{1}{a^{m}} = a^{-m}$, note that the fraction $\frac{1}{3}$ remains unchanged

Example 8 Write $\frac{4}{\sqrt{x}} = \frac{4}{x^{\frac{1}{2}}} \\
= 4x^{-\frac{1}{2}}
\end{cases}$
1 Use the rule $\frac{1}{a^{m}} = \frac{1}{a^{-m}}$

Factorising expressions

Key points

- Factorising an expression is the opposite of expanding the brackets.
- A quadratic expression is in the form $ax^2 + bx + c$, where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is *b* and whose product is *ac*.
- An expression in the form $x^2 y^2$ is called the difference of two squares. It factorises to (x y)(x + y).

Examples

Example 1 Factorise $15x^2y^3 + 9x^4y$

$15x^2y^3 + 9x^4y = 3x^2y(5y^2 + 3x^2)$	The highest common factor is $3x^2y$. So take $3x^2y$ outside the brackets and then divide each term by $3x^2y$ to find the terms in the brackets
---	---

Example 2 Factorise $4x^2 - 25y^2$

$4x^2 - 25y^2 = (2x + 5y)(2x - 5y)$	This is the difference of two squares as the two terms can be written as $(2x)^2$ and $(5y)^2$
-------------------------------------	--

Example 3 Factorise $x^2 + 3x - 10$

<i>b</i> = 3, <i>ac</i> = -10	 Work out the two factors of ac = -10 which add to give b = 3 (5 and -2)
So $x^2 + 3x - 10 = x^2 + 5x - 2x - 10$	2 Rewrite the <i>b</i> term (3 <i>x</i>) using these two factors
= x(x + 5) - 2(x + 5)	3 Factorise the first two terms and the last two terms
= (x + 5)(x - 2)	4 $(x + 5)$ is a factor of both terms

b = -11, ac = -60	1 Work out the two factors of
	ac = -60 which add to give $b = -11$
So	(–15 and 4)
$6x^2 - 11x - 10 = 6x^2 - 15x + 4x - 10$	2 Rewrite the <i>b</i> term $(-11x)$ using
	these two factors
= 3x(2x-5) + 2(2x-5)	3 Factorise the first two terms and
	the last two terms
=(2x-5)(3x+2)	4 $(2x - 5)$ is a factor of both terms

Example 4

Simplify $\frac{x^2 - 4x - 21}{2x^2 + 9x + 9}$

Factorise $6x^2 - 11x - 10$

$\frac{x^2 - 4x - 21}{2x^2 + 9x + 9}$	1 Factorise the numerator and the denominator
For the numerator: b = -4, $ac = -21So$	 Work out the two factors of ac = -21 which add to give b = -4 (-7 and 3)
$x^2 - 4x - 21 = x^2 - 7x + 3x - 21$	3 Rewrite the <i>b</i> term (−4 <i>x</i>) using these two factors
= x(x - 7) + 3(x - 7)	4 Factorise the first two terms and the last two terms
= (x - 7)(x + 3)	5 $(x - 7)$ is a factor of both terms
For the denominator: b = 9, ac = 18	 6 Work out the two factors of ac = 18 which add to give b = 9 (6 and 3)
$2x^2 + 9x + 9 = 2x^2 + 6x + 3x + 9$	7 Rewrite the <i>b</i> term (9 <i>x</i>) using these two factors
= 2x(x+3) + 3(x+3)	8 Factorise the first two terms and the last two terms
= (x + 3)(2x + 3) So	9 $(x + 3)$ is a factor of both terms
$\frac{x^2 - 4x - 21}{2x^2 + 9x + 9} = \frac{(x - 7)(x + 3)}{(x + 3)(2x + 3)}$ $= \frac{x - 7}{2x + 3}$	 10 (x + 3) is a factor of both the numerator and denominator so cancels out as a value divided by itself is 1

Completing the square

Key points

- Completing the square for a quadratic rearranges $ax^2 + bx + c$ into the form $p(x + q)^2 + r$
- If $a \neq 1$, then factorise using a as a common factor.

Examples

Example 1 Complete the square for the quadratic expression $x^2 + 6x - 2$

$x^2 + 6x - 2$	1 Write $x^2 + bx + c$ in the form
$=(x+3)^2-9-2$	$\left(x+\frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c$
$=(x+3)^2-11$	2 Simplify

Example 2 Write $2x^2 - 5x + 1$ in the form $p(x + q)^2 + r$

$2x^2 - 5x + 1$	1 Before completing the square write $ax^2 + bx + c$ in the form $a\left(x^2 + \frac{b}{a}x\right) + c$
$= 2\left(x^2 - \frac{5}{2}x\right) + 1$	2 Now complete the square by writing $x^2 - \frac{5}{2}x$ in the form
$= 2\left[\left(x - \frac{5}{4}\right)^2 - \left(\frac{5}{4}\right)^2\right] + 1$	$\left(x+\frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2$
$= 2\left(x - \frac{5}{4}\right)^2 - \frac{25}{8} + 1$	3 Expand the square brackets – don't forget to multiply $\left(\frac{5}{4}\right)^2$ by the
$= 2\left(x-\frac{5}{4}\right)^2 - \frac{17}{8}$	factor of 2 4 Simplify

Solving quadratic equations by factorisation

Key points

- A quadratic equation is an equation in the form $ax^2 + bx + c = 0$ where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is *b* and whose products is *ac*.
- When the product of two numbers is 0, then at least one of the numbers must be 0.
- If a quadratic can be solved it will have two solutions (these may be equal).

Examples

Example 1 Solve $5x^2 = 15x$

$5x^2 = 15x$	1 Rearrange the equation so that all
$5x^2 - 15x = 0$	of the terms are on one side of the equation and it is equal to zero. Do not divide both sides by x as this would lose the solution x = 0.
5x(x-3)=0	 Factorise the quadratic equation. 5x is a common factor.
So 5 <i>x</i> = 0 or (<i>x</i> – 3) = 0	3 When two values multiply to make zero, at least one of the values must be zero.
Therefore $x = 0$ or $x = 3$	4 Solve these two equations.

Example 2 Solve $x^2 + 7x + 12 = 0$

$x^2 + 7x + 12 = 0$	1 Factorise the quadratic equation.
b = 7, ac = 12	Work out the two factors of <i>ac</i> = 12 which add to give you <i>b</i> = 7. (4 and 3)
$x^2 + 4x + 3x + 12 = 0$	2 Rewrite the <i>b</i> term (7 <i>x</i>) using these two factors.
x(x + 4) + 3(x + 4) = 0	3 Factorise the first two terms and the last two terms.
(x+4)(x+3) = 0	4 $(x + 4)$ is a factor of both terms.
So (x + 4) = 0 or (x + 3) = 0	5 When two values multiply to make zero, at least one of the values must be zero.
Therefore $x = -4$ or $x = -3$	6 Solve these two equations.

Example 3 Solve
$$9x^2 - 16 = 0$$

$9x^2 - 16 = 0$	1 Factorise the quadratic equation.
(3x+4)(3x-4) = 0	This is the difference of two squares
	as the two terms are $(3x)^2$ and $(4)^2$.
So $(3x + 4) = 0$ or $(3x - 4) = 0$	2 When two values multiply to make
	zero, at least one of the values must
4 4	be zero.
$x = -\frac{4}{3}$ or $x = \frac{4}{3}$	3 Solve these two equations.

Example 4

4	Solve $2x^2 - 5x - 12 = 0$

b = -5, ac = -24	1 Factorise the quadratic equation. Work out the two factors of $ac = -24$ which add to give you $b = -5$. (-8 and 3)
So $2x^2 - 8x + 3x - 12 = 0$	2 Rewrite the <i>b</i> term $(-5x)$ using these two factors.
2x(x-4) + 3(x-4) = 0	3 Factorise the first two terms and the last two terms.
(x-4)(2x+3) = 0	4 $(x - 4)$ is a factor of both terms.
So $(x - 4) = 0$ or $(2x + 3) = 0$	5 When two values multiply to make zero, at least one of the values must
$x = 4$ or $x = -\frac{3}{2}$	be zero.
$x - 4$ or $x\frac{1}{2}$	6 Solve these two equations.

Solving quadratic equations by completing the square

Key points

• Completing the square lets you write a quadratic equation in the form $p(x + q)^2 + r = 0$.

Examples

Example 5 Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form.

$x^2 + 6x + 4 = 0$	1 Write $x^2 + bx + c = 0$ in the form
$(x+3)^2 - 9 + 4 = 0$	$\left(x+\frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c = 0$
$(x+3)^2-5=0$	2 Simplify.
$(x+3)^2 = 5$	3 Rearrange the equation to work out
	x. First, add 5 to both sides.
$x+3=\pm\sqrt{5}$	4 Square root both sides.
	Remember that the square root of a
$x = \pm \sqrt{5} - 3$	value gives two answers.
$x = \pm \sqrt{3} - 3$	5 Subtract 3 from both sides to solve
	the equation.
So $x = -\sqrt{5} - 3$ or $x = \sqrt{5} - 3$	6 Write down both solutions.

Example 6 Solve $2x^2 - 7x + 4 = 0$. Give your solutions in surd form.

$2x^{2} - 7x + 4 = 0$ $2\left(x^{2} - \frac{7}{2}x\right) + 4 = 0$	1 Before completing the square write $ax^2 + bx + c$ in the form $a\left(x^2 + \frac{b}{a}x\right) + c$
$2\left[\left(x-\frac{7}{4}\right)^2-\left(\frac{7}{4}\right)^2\right]+4=0$	2 Now complete the square by writing $x^2 - \frac{7}{2}x$ in the form
	$\left(x + \frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2$
$2\left(x - \frac{7}{4}\right)^2 - \frac{49}{8} + 4 = 0$	3 Expand the square brackets.
$2\left(x - \frac{7}{4}\right)^2 - \frac{17}{8} = 0$	4 Simplify.
	(continued on next page)
$2\left(x-\frac{7}{4}\right)^2 = \frac{17}{8}$	5 Rearrange the equation to work out <i>x</i> . First, add $\frac{17}{8}$ to both sides.
$\left(x-\frac{7}{4}\right)^2 = \frac{17}{16}$	6 Divide both sides by 2.

$x - \frac{7}{4} = \pm \frac{\sqrt{17}}{4}$	 Square root both sides. Remember that the square root of a value gives
$x = \pm \frac{\sqrt{17}}{4} + \frac{7}{4}$	two answers. 8 Add $\frac{7}{4}$ to both sides.
So $x = \frac{7}{4} - \frac{\sqrt{17}}{4}$ or $x = \frac{7}{4} + \frac{\sqrt{17}}{4}$	9 Write down both the solutions.

Solving quadratic equations by using the formula

Key points

• Any quadratic equation of the form $ax^2 + bx + c = 0$ can be solved using the formula $-b \pm \sqrt{b^2 - 4ac}$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- If $b^2 4ac$ is negative then the quadratic equation does not have any real solutions.
- It is useful to write down the formula before substituting the values for *a*, *b* and *c*.

Examples

Example 7 Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form.

$a = 1, b = 6, c = 4$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	1 Identify <i>a</i> , <i>b</i> and <i>c</i> and write down the formula. Remember that $-b \pm \sqrt{b^2 - 4ac}$ is all over 2 <i>a</i> , not just part of it.
$x = \frac{-6 \pm \sqrt{6^2 - 4(1)(4)}}{2(1)}$	2 Substitute $a = 1, b = 6, c = 4$ into the formula.
$x = \frac{-6 \pm \sqrt{20}}{2}$	 Simplify. The denominator is 2, but this is only because <i>a</i> = 1. The denominator will not always be 2.
$x = \frac{-6 \pm 2\sqrt{5}}{2}$	4 Simplify $\sqrt{20}$. $\sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} = 2\sqrt{5}$
$x = -3 \pm \sqrt{5}$ So $x = -3 - \sqrt{5}$ or $x = \sqrt{5} - 3$	5 Simplify by dividing numerator and denominator by 2.6 Write down both the solutions.

Example 8 Solve $3x^2 - 7x - 2 = 0$. Give your solutions in surd form.

$a = 3, b = -7, c = -2$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	1 Identify <i>a</i> , <i>b</i> and <i>c</i> , making sure you get the signs right and write down the formula. Remember that $-b \pm \sqrt{b^2 - 4ac}$ is all over 2 <i>a</i> , not just part of it.
$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(3)(-2)}}{2(3)}$	2 Substitute $a = 3$, $b = -7$, $c = -2$ into the formula.
$x = \frac{7 \pm \sqrt{73}}{6}$ So $x = \frac{7 - \sqrt{73}}{6}$ or $x = \frac{7 + \sqrt{73}}{6}$	 3 Simplify. The denominator is 6 when a = 3. A common mistake is to always write a denominator of 2. 4 Write down both the solutions.

Solving linear simultaneous equations using the elimination method

Key points

- Two equations are simultaneous when they are both true at the same time.
- Solving simultaneous linear equations in two unknowns involves finding the value of each unknown which works for both equations.
- Make sure that the coefficient of one of the unknowns is the same in both equations.
- Eliminate this equal unknown by either subtracting or adding the two equations.

Examples

Example 1 Solve the simultaneous equations 3x + y = 5 and x + y = 1

3x + y = 5 $- x + y = 1$ $2x = 4$ So $x = 2$	1 Subtract the second equation from the first equation to eliminate the <i>y</i> term.
Using x + y = 1 2 + y = 1 So y = -1	 2 To find the value of y, substitute x = 2 into one of the original equations.
Check: equation 1: $3 \times 2 + (-1) = 5$ YES equation 2: $2 + (-1) = 1$ YES	3 Substitute the values of <i>x</i> and <i>y</i> into both equations to check your answers.

Example 2 Solve x + 2y = 13 and 5x - 2y = 5 simultaneously.

x + 2y = 13 + 5x - 2y = 5 6x = 18 So x = 3	 Add the two equations together to eliminate the y term.
Using $x + 2y = 13$ 3 + 2y = 13 So y = 5	 To find the value of y, substitute x = 3 into one of the original equations.
Check: equation 1: 3 + 2 × 5 = 13 YES equation 2: 5 × 3 - 2 × 5 = 5 YES	3 Substitute the values of <i>x</i> and <i>y</i> into both equations to check your answers.

Example 3 Solve 2x + 3y = 2 and 5x + 4y = 12 simultaneously.

$(2x + 3y = 2) \times 4 \rightarrow 8x + 12y = 8$ $(5x + 4y = 12) \times 3 \rightarrow 15x + 12y = 36$ 7x = 28 So $x = 4$	1 Multiply the first equation by 4 and the second equation by 3 to make the coefficient of y the same for both equations. Then subtract the first equation from the second equation to eliminate the y term.
Using $2x + 3y = 2$ $2 \times 4 + 3y = 2$ So $y = -2$	 2 To find the value of y, substitute x = 4 into one of the original equations.
Check: equation 1: $2 \times 4 + 3 \times (-2) = 2$ YES equation 2: $5 \times 4 + 4 \times (-2) = 12$ YES	3 Substitute the values of <i>x</i> and <i>y</i> into both equations to check your answers.

Solving linear simultaneous equations using the substitution method

Key points

• The subsitution method is the method most commonly used for A level. This is because it is the method used to solve linear and quadratic simultaneous equations.

Examples

Example 4 Solve the simultaneous equations y = 2x + 1 and 5x + 3y = 14

5x + 3(2x + 1) = 14	 Substitute 2x + 1 for y into the second equation.
5x + 6x + 3 = 14	2 Expand the brackets and simplify.
11x + 3 = 14	
11x = 11	3 Work out the value of <i>x</i> .
So <i>x</i> = 1	
Using $y = 2x + 1$	4 To find the value of y, substitute
$y = 2 \times 1 + 1$	x = 1 into one of the original
So <i>y</i> = 3	equations.
Check:	5 Substitute the values of <i>x</i> and <i>y</i> into
equation 1: $3 = 2 \times 1 + 1$ YES	both equations to check your
equation 2: $5 \times 1 + 3 \times 3 = 14$ YES	answers.

Example 5

Solve 2x - y = 16 and 4x + 3y = -3 simultaneously.

	1
y = 2x - 16	1 Rearrange the first equation.
4x + 3(2x - 16) = -3	 Substitute 2x – 16 for y into the second equation.
4x + 6x - 48 = -3	3 Expand the brackets and simplify.
10x - 48 = -3	
10 <i>x</i> = 45	4 Work out the value of <i>x</i> .
So $x = 4\frac{1}{2}$	
Using $y = 2x - 16$ $y = 2 \times 4\frac{1}{2} - 16$	5 To find the value of y, substitute $x = 4\frac{1}{2}$ into one of the original
So <i>y</i> = -7	equations.
Check:	6 Substitute the values of v and v inte
equation 1: 2 × $4\frac{1}{2}$ – (–7) = 16 YES	6 Substitute the values of <i>x</i> and <i>y</i> into both equations to check your
equation 2: $4 \times 4\frac{1}{2} + 3 \times (-7) = -3$ YES	answers.

Solving linear and quadratic simultaneous equations

Key points

- Make one of the unknowns the subject of the linear equation (rearranging where necessary).
- Use the linear equation to substitute into the quadratic equation.
- There are usually two pairs of solutions.

Examples

Example 1 Solve the simultaneous equations y = x + 1 and $x^2 + y^2 = 13$

$x^2 + (x + 1)^2 = 13$	 Substitute x + 1 for y into the second equation.
$x^2 + x^2 + x + x + 1 = 13$	2 Expand the brackets and simplify.
$2x^2 + 2x + 1 = 13$	
$2x^2 + 2x - 12 = 0$	3 Factorise the quadratic equation.
(2x-4)(x+3) = 0	
So $x = 2$ or $x = -3$	4 Work out the values of <i>x</i> .
Using $y = x + 1$	5 To find the value of <i>y</i> , substitute
When <i>x</i> = 2, <i>y</i> = 2 + 1 = 3	both values of <i>x</i> into one of the
When $x = -3$, $y = -3 + 1 = -2$	original equations.
So the solutions are	
x = 2, y = 3 and $x = -3, y = -2$	
Check:	6 Substitute both pairs of values of <i>x</i>
	-
	and y into both equations to check
and $-2 = -3 + 1$ YES	your answers.
equation 2: $2^2 + 3^2 = 13$ YES	
and $(-3)^2 + (-2)^2 = 13$ YES	

Example 2 Solve 2x + 3y = 5 and $2y^2 + xy = 12$ simultaneously.

$x = \frac{5 - 3y}{2}$	1	Rearrange the first equation.
$2y^2 + \left(\frac{5-3y}{2}\right)y = 12$	2	Substitute $\frac{5-3y}{2}$ for x into the
$2y^2 + \frac{5y - 3y^2}{2} = 12$		second equation. Notice how it is easier to substitute for <i>x</i> than for <i>y</i> .
$2y + \frac{2}{2} - 12$ $4y^2 + 5y - 3y^2 = 24$	3	Expand the brackets and simplify.
$y^2 + 5y - 24 = 0$		
(y+8)(y-3) = 0	4	Factorise the quadratic equation.
So $y = -8$ or $y = 3$	5	Work out the values of y.
Using $2x + 3y = 5$ When $y = -8$, $2x + 3 \times (-8) = 5$, $x = 14.5$ When $y = 3$, $2x + 3 \times 3 = 5$, $x = -2$	6	To find the value of <i>x</i> , substitute both values of <i>y</i> into one of the original equations.
So the solutions are $x = 14.5$, $y = -8$ and $x = -2$, $y = 3$		
Check: equation 1: $2 \times 14.5 + 3 \times (-8) = 5$ YES and $2 \times (-2) + 3 \times 3 = 5$ YES equation 2: $2 \times (-8)^2 + 14.5 \times (-8) = 12$ YES and $2 \times (3)^2 + (-2) \times 3 = 12$ YES	7	Substitute both pairs of values of <i>x</i> and <i>y</i> into both equations to check your answers.

Linear inequalities

Key points

- Solving linear inequalities uses similar methods to those for solving linear equations.
- When you multiply or divide an inequality by a negative number you need to reverse the inequality sign, e.g. < becomes >.

Examples

Example 1 Solve $-8 \le 4x < 16$

$-8 \le 4x < 16$ $-2 \le x < 4$	Divide all three terms by 4.
---------------------------------	------------------------------

Example 2 Solve $4 \le 5x < 10$

$4 \le 5x < 10$	Divide all three terms by 5.
$\frac{4}{5} \le x < 2$	

Example 3 Solve 2*x* – 5 < 7

2 <i>x</i> - 5 < 7 2 <i>x</i> < 12	 Add 5 to both sides. Divide both sides by 2.
<i>x</i> < 6	

Example 4 Solve $2 - 5x \ge -8$

$2 - 5x \ge -8$ $-5x \ge -10$ $x \le 2$	 Subtract 2 from both sides. Divide both sides by -5. Remember to reverse the inequality when dividing by a negative number.
---	--

Example 5 Solve 4(x - 2) > 3(9 - x)

4(x - 2) > 3(9 - x) 4x - 8 > 27 - 3x 7x - 8 > 27 7x > 35	 Expand the brackets. Add 3x to both sides. Add 8 to both sides. Divide both sides by 7
7 <i>x</i> > 35	4 Divide both sides by 7.
x > 5	

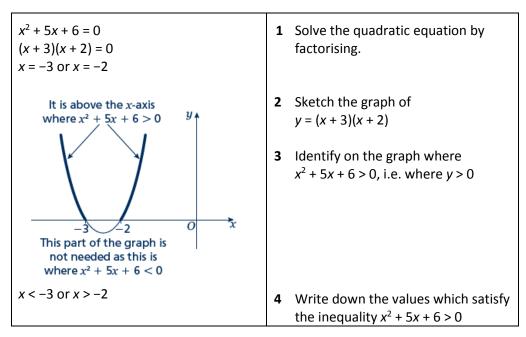
Quadratic inequalities

Key points

- First replace the inequality sign by = and solve the quadratic equation.
- Sketch the graph of the quadratic function.
- Use the graph to find the values which satisfy the quadratic inequality.

Examples

Example 1 Find the set of values of x which satisfy $x^2 + 5x + 6 > 0$



Example 2 Find the set of values of x which satisfy $x^2 - 5x \le 0$

$x^{2} - 5x = 0$ x(x - 5) = 0 x = 0 or x = 5	 Solve the quadratic equation by factorising.
x = 0 of x = 5	2 Sketch the graph of $y = x(x - 5)$
	3 Identify on the graph where $x^2 - 5x \le 0$, i.e. where $y \le 0$
$0 \le x \le 5$	4 Write down the values which satisfy the inequality $x^2 - 5x \le 0$

Example 3 Find the set of values of x which satisfy $-x^2 - 3x + 10 \ge 0$

