

Year 13 Pure Mathematics Curriculum Overview

	Title		
1	Proof: Examples including proof by deduction* and proof by contradiction		
2	Algebraic and partial fractions		
	Simplifying algebraic fractions		
	Partial fractions		
3	Functions and modelling		
	Modulus function		
	Composite and inverse functions		
	Transformations		
	Modelling with functions*		
	*examples may be Trigonometric, exponential, reciprocal etc.		
4	Series and sequences		
	Arithmetic and geometric progressions (proofs of 'sum formulae')		
	Sigma notation		
	Recurrence and iterations		
5	The binomial theorem		
	Expanding $(a + bx)^n$ for rational <i>n</i> ; knowledge of range of validity		
	Expansion of functions by first using partial fractions		
6	Trigonometry		
	Radians (exact values), arcs and sectors		
	Small angles		
	Secant, cosecant and cotangent (definitions, identities and graphs);		
	Inverse trigonometrical functions; Inverse trigonometrical functions		
	Compound* and double (and half) angle formulae		
	*geometric proofs expected		
	$R\cos(x \pm \alpha)$ or $R\sin(x \pm \alpha)$		
	Proving trigonometric identities		
	Solving problems in context (e.g. mechanics)		
7	Parametric equations		
	Definition and converting between parametric and Cartesian forms		
	Curve sketching and modelling		

	Title
8	Differentiation
	Differentiating sin x and cos x from first principles
	Differentiating exponentials and logarithms
	Differentiating products, quotients, implicit and parametric functions.
	Second derivatives (rates of change of gradient, inflections)
	Rates of change problems* (including growth and kinematics)
	*see Integration (part 2) – Differential equations
9	Numerical methods*
	Location of roots
	Solving by iterative methods (knowledge of 'staircase and cobweb' diagrams)
	Newton-Raphson method
	Problem solving
	*See Integration (part 2) for the trapezium rule
10	Integration (part 1)
	Integrating x^n (including when $n = -1$), exponentials and trigonometric functions
	Using the reverse of differentiation, and using trigonometric identities to manipulate integrals
11	Integration (part 2)
	Integration by substitution
	Integration by parts
	Use of partial fractions
	Areas under graphs or between two curves, including understanding the area is the limit of a sum (using sigma notation)
	The trapezium rule
	Differential equations (including knowledge of the family of solution curves)
12	Vectors (3D): Use of vectors in three dimensions; knowledge of column vectors and i , j and k unit vectors

Year 13 Statistics and Mechanics Curriculum Overview

	Statistics		
1	Regression and correlation		
	Change of variable		
	Correlation coefficients		
	Statistical hypothesis testing for zero correlation		
2	Probability		
	Using set notation for probability		
	Conditional probability		
	Questioning assumptions in probability		
3	The Normal distribution		
	Understand and use the Normal distribution		
	Use the Normal distribution as an approximation to the binomial distribution		
	Selecting the appropriate distribution		
	Statistical hypothesis testing for the mean of the Normal distribution		
	Mechanics		
<u>4</u>	Moments: Forces' turning effect		
<u>5</u>	Forces at any angle		
	Resolving forces		
	Friction forces (including coefficient of friction μ)		
<u>6</u>	Applications of kinematics: Projectiles		
<u>7</u>	Applications of forces		
	Equilibrium and statics of a particle (including ladder problems)		
	Dynamics of a particle		
<u>8</u>	Further kinematics		
	Constant acceleration (equations of motion in 2D; the i , j system)		
	Variable acceleration (use of calculus and finding vectors \dot{r} and \ddot{r} at a given time)		