Silent Starter

https://www.ocr.org.uk/lmages/171726-specification-accredited-a-level-gce-physics-a-h556.pdf

2 The specification overview

2a. Overview of A Level in Physics A (H556)

Learners must complete all components (01, 02, 03 and 04) to be awarded the OCR A Level in Physics A.

Content Overview

Content is split into six teaching modules:

- Module 1 Development of practical skills in physics
- Module 2 Foundations of physics
- Module 3 Forces and motion
- Module 4 Electrons, waves and photons
- Module 5 Newtonian world and astrophysics
- Module 6 Particles and medical physics

Component 01 assesses content from modules 1, 2, 3 and 5.

Component 02 assesses content from modules 1, 2, 4 and 6.

Component 03 assesses content from all modules (1 to 6).

Assessment Overview

Modelling physics (01) 100 marks 2 hours 15 minutes written paper

of total

37%

Exploring physics (02)

100 marks

2 hours 15 minutes written paper

37%

of total A level

Unified physics (03) 70 marks

1 hour 30 minutes written paper

26%

of total A level

Practical Endorsement in physics (04)

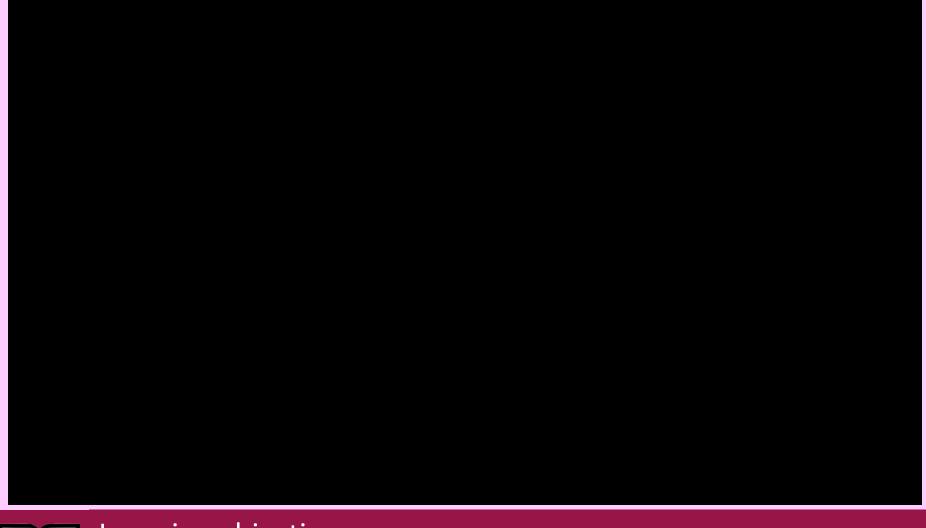
(non exam assessment)

Reported separately

(see Section 5g)

Core Expectations for Every Lesson

- 1. Attend lessons on time and in professional attire
- 2. Be prepared for each lesson by ensuring you bring the appropriate equipment
- 3. Ensure all work is organised in the appropriate section of your subject folder
- 4. All deadlines must be met to avoid a 6 week "Risk of Failure" program
- 5. Respect the classroom, Replace chairs, Rubbish in bins
- 6. Speak to ALL members of the HT community with respect
- 7. No mobile phones/ear pods to be used in lessons or around the school
- 8. Starters are to be completed in silence
- 9. Be proactive and not reactive
- 10. Expect to work harder than you ever have before


Silent Starter

27 June 2023

Silent Starter

Learning objectives

Describe the

standard model

Explain the structure

of particles

Key words:

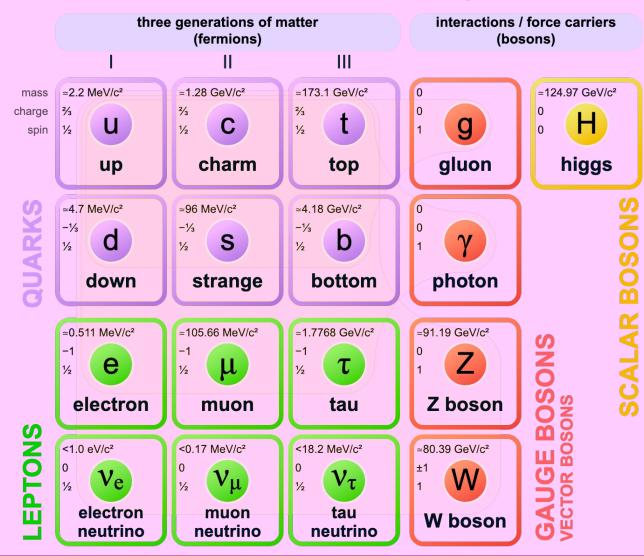
Quark

Lepton

Hadron

Baryon

Proton


Neutron

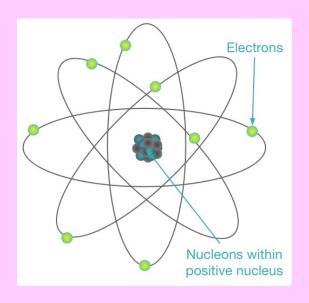
Electron

Any particle that contains quarks is a hadron.

A lepton is a fundamental particle

Standard Model of Elementary Particles

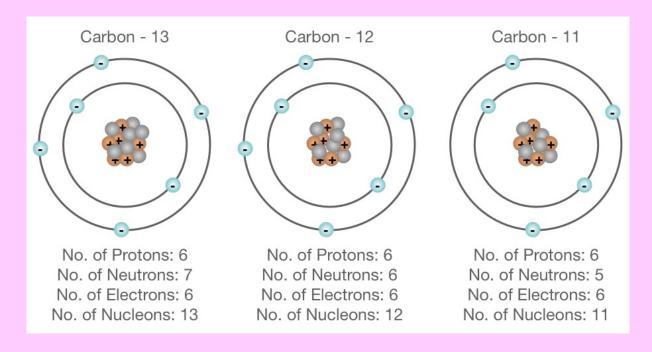
The Nucleus


The nucleus consists of protons and neutrons, which are collectively known as nucleons.

The following notation represents the nucleus of the atom:

Mass Number or Nucleon Number

> Element Symbol


Proton Number or Atomic Number

Isotopes

An isotope is any of two or more forms of a chemical element. They have the same number of protons in the nucleus, but have different numbers of neutrons.

Constituents of the Atom

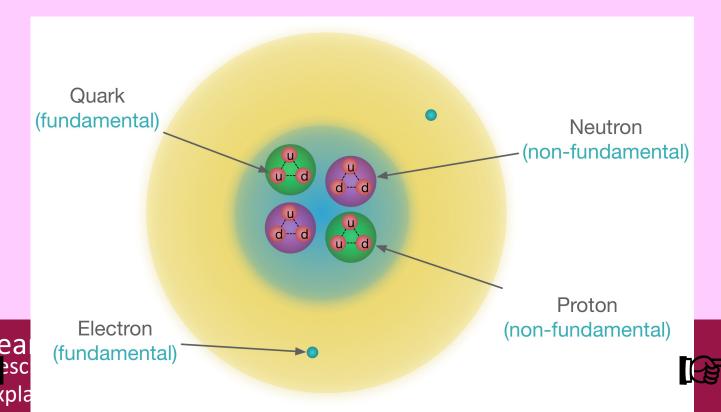
Proton

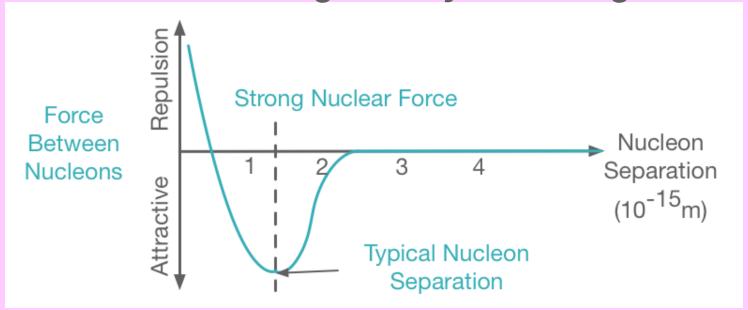
	Relative	SI Unit
Mass	1	1.673 x 10 ⁻²⁷ kg
Charge	1	1.6 x 10 ⁻¹⁹ C

Neutron

	Relative	SI Unit
Mass	1	1.675 x 10 ⁻²⁷ kg
Charge	0	0

Electron


	Relative	SI Unit
Mass	0.0005	9.11 x 10 ⁻³¹ kg
Charge	-1	-1.6 x 10 ⁻¹⁹ C

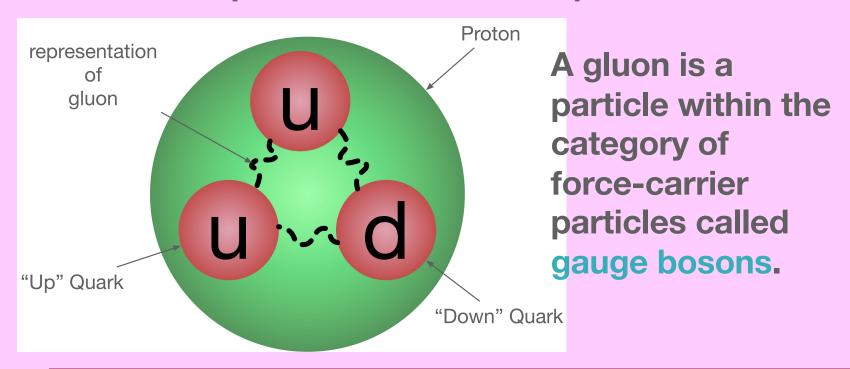

Fundamental Particles

Fundamental (elementary) particles are those which are not composed of other particles. The atom consists of fundamental and non-fundamental particles

Strong Force

The nucleus is held together by the strong force.

- Highly attractive between two protons within 1-2 femtometres
- · Repulsive between two protons at smaller separations (cannot overlap)


It is extremely short range and has no effect outside of the nucleus

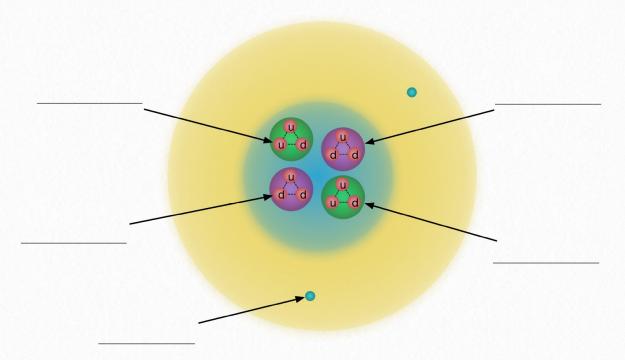
Exchange Particles

It is thought that exchange particles, called gluons, are responsible for the Strong Force. They act between the quarks in a neutron or proton.

Four Fundamental Forces

There are four fundamental forces that act within a nucleus. Each is thought to have their own set of exchange particles, which "carry" the force:

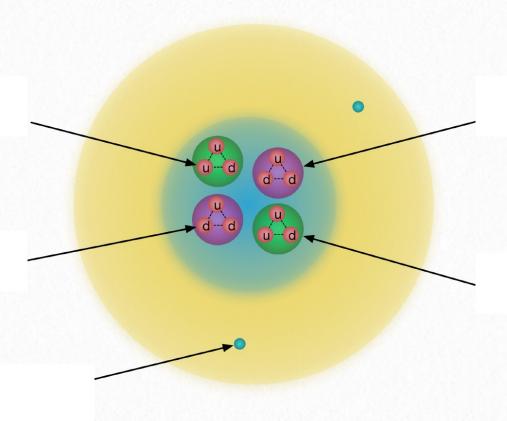
Fundamental Force:	Acts On:	Exchange particles (gauge boson):
Strong	Quarks	Gluons
Gravitational		Gravitons (not yet observed)
Electromagnetic	All particles with charge	Photons
Weak	Leptons	W and Z Bosons



Complete the Questions

Particle Physics

1. Label the diagram of the particles within the atom below:


2. State what is meant by a fundamental particle

Checking Pro

Particle Physics

1.

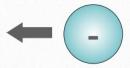
2. State what is meant by a fundamental particle

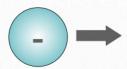
Fundamental (elementary) particles are those which are not composed of other particles.

Checking Progress

Challenge Task

- 3. The particles within an atom can be divided into fundamental particles and non-fundamental particles.
 - a) Give two examples fundamental particles:
 - 3. a) Quark, any lepton (e.g. electron)
 - b) Give two examples of non-fundamental particles:
 - b) Proton, neutron (any baryon or meson)


Questions Continued


Particle Physics

Name the four fundamental forces.

4. Strong, Weak, Electromagnetic and Gravitational

5. Two electrons approach each other but do not collide. They exert a force on each other and move apart.

a) Which of the four fundamental forces is involved in this process.

5. a) Weak

- b) Name the exchange particle that plays a role in this interaction.
 - b) Photon (Gauge Boson)

6.	State the quark composition of	
	a)	The proton

6. a) uud

b) The neutron

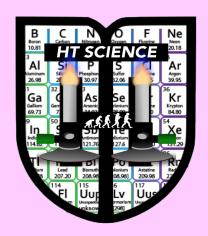
b) udd

- 7. A π^o particle is classed as a meson. It has a charge of 0 and a baryon number of 0. Using the quark table below, which of the following combinations could correspond to a π^o meson.
 - A. $s\bar{u}$
 - B. udd

. (

- C. $d\bar{d}$
- D. $u\bar{d}$

Charge
+2/3
-1/3
-1/3



End & send

Expectations

- 1. Put the borrowed equipment back.
- 2. Bin all rubbish.
- 3. Put your belongings in your <u>baq</u>.
- 4. Double check 1 to 3 has been done.
- 5. Stand and stay behind your chair silently.

