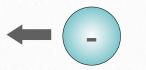

Questions

Particle Physics

1. Label the diagram of the particles within the atom below:


- 2. State what is meant by a fundamental particle
- 3. The particles within an atom can be divided into fundamental particles and non-fundamental particles.
 - a) Give two examples fundamental particles:
 - b) Give two examples of non-fundamental particles:


Questions Continued

Particle Physics

4. Name the four fundamental forces.

5. Two electrons approach each other but do not collide. They exert a force on each other and move apart.

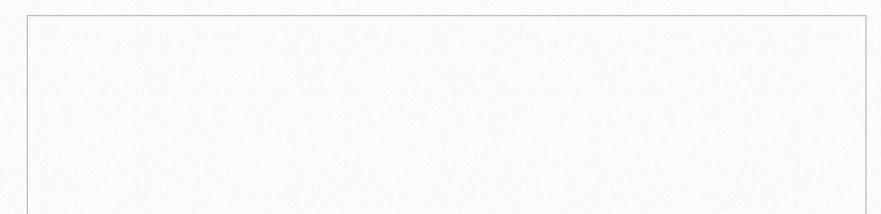
- a) Which of the four fundamental forces is involved in this process.
- b) Name the exchange particle that plays a role in this interaction.
- 6. State the quark composition of:
 - a) The proton
 - b) The neutron
- 7. A π^{o} particle is classed as a meson. It has a charge of 0 and a baryon number of 0. Using the quark table below, which of the following combinations could correspond to a π^{o} meson.

Α.	$sar{u}$	Quark	Charge
В.	udd	u	+2/3
C.	$d\bar{d}$	d	-1/3
D.	$u \bar{d}$	S	-1/3

Questions Continued

Particle Physics

- 8. An unstable nuclei undergoes radioactive emission to become more stable. Two possible decays are: β^- and β^+ decay. An isotope of carbon ${}_{6}^{14}C$ decays by beta emission into an isotope of nitrogen ${}_{7}^{14}N$. An isotope of magnesium ${}_{12}^{23}Mg$ decays by beta emission into an isotope of sodium ${}_{11}^{23}Na$.
 - a) Complete the following decay equations for the carbon and magnesium isotopes.
 - i. carbon decay (β^- emission where a neutron "turns into" a proton)


$${}^{14}_{6}C \longrightarrow {}^{14}_{\dots}N + e^- + \bar{\nu_e}$$

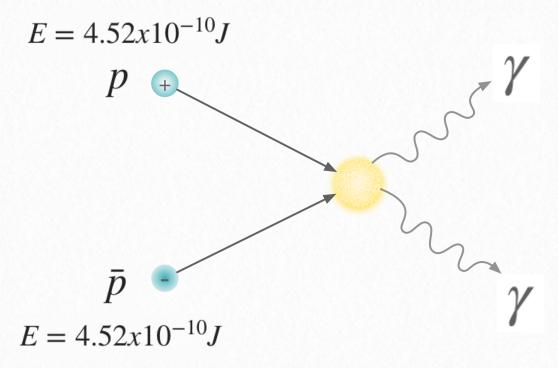
ii. magnesium decay (β^+ emission where a proton "turns into" a neutron)

$$^{23}_{12}Mg \longrightarrow Ma + e^+ + \nu_e$$

- b) State the two beta decays in terms of a quark model of the nucleons.
 - i. beta-plus decay
 - ii. beta-minus decay
- 9. State why the following reaction is not possible

$$p + n \longrightarrow p + p + \bar{p}$$

Questions Continued


Particle Physics

10. A proton and an antiproton can annihilate each other, in this strong interaction:

$$p + \bar{p} \longrightarrow \pi^+ + x$$

Look at the conservation of charge, baryon number and lepton number to help suggest the identity of particle *x*.

11. A proton and anti-proton, each of energy $E = 4.52 \times 10^{-10} J$, annihilate and produce two gamma photons.

Calculate the wavelength of each gamma photon.