Questions

Particle Physics

1. Label the diagram of the particles within the atom below:

2. State what is meant by a fundamental particle
\square
3. The particles within an atom can be divided into fundamental particles and non-fundamental particles.
a) Give two examples fundamental particles:
\square
b) Give two examples of non-fundamental particles:

Questions Continued

Particle Physics

4. Name the four fundamental forces.
\square
5. Two electrons approach each other but do not collide. They exert a force on each other and move apart.

a) Which of the four fundamental forces is involved in this process.
\square
b) Name the exchange particle that plays a role in this interaction.
\square
6. State the quark composition of:
a) The proton
\square
b) The neutron

7. $\mathrm{A} \pi^{o}$ particle is classed as a meson. It has a charge of 0 and a baryon number of 0 . Using the quark table below, which of the following combinations could correspond to a π^{o} meson.
A. $s \bar{u}$
B. $u d d$
C. $d \bar{d}$
D. $u \bar{d}$

Quark	Charge
u	$+2 / 3$
d	$-1 / 3$
s	$-1 / 3$

Questions Continued

Particle Physics

8. An unstable nuclei undergoes radioactive emission to become more stable. Two possible decays are: β^{-}and β^{+}decay. An isotope of carbon ${ }_{6}^{14} \mathrm{C}$ decays by beta emission into an isotope of nitrogen ${ }_{7}^{14} \mathrm{~N}$. An isotope of magnesium ${ }_{12}^{23} \mathrm{Mg}$ decays by beta emission into an isotope of sodium ${ }_{11}^{23} \mathrm{Na}$.
a) Complete the following decay equations for the carbon and magnesium isotopes.
i. carbon decay (β^{-}emission where a neutron "turns into" a proton)

$$
{ }_{6}^{14} C \longrightarrow{ }_{\ldots .}^{14} N+e^{-}+\bar{\nu}_{e}
$$

ii. magnesium decay (β^{+}emission where a proton "turns into" a neutron)

b) State the two beta decays in terms of a quark model of the nucleons.
i. beta-plus decay
\square
ii. beta-minus decay
\square
9. State why the following reaction is not possible

$$
p+n \longrightarrow p+p+\bar{p}
$$

Questions Continued

Particle Physics

10. A proton and an antiproton can annihilate each other, in this strong interaction:

$$
p+\bar{p} \longrightarrow \pi^{+}+x
$$

Look at the conservation of charge, baryon number and lepton number to help suggest the identity of particle x.
11. A proton and anti-proton, each of energy $E=4.52 \times 10^{-10} J$, annihilate and produce two gamma photons.

Calculate the wavelength of each gamma photon.

