Silent Starter

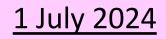
https://www.ocr.org.uk/l mages/171726specification-accrediteda-level-gce-physics-ah556.pdf

2 The specification overview

2a. Overview of A Level in Physics A (H556)

Learners must complete all components (01, 02, 03 and 04) to be awarded the OCR A Level in Physics A.

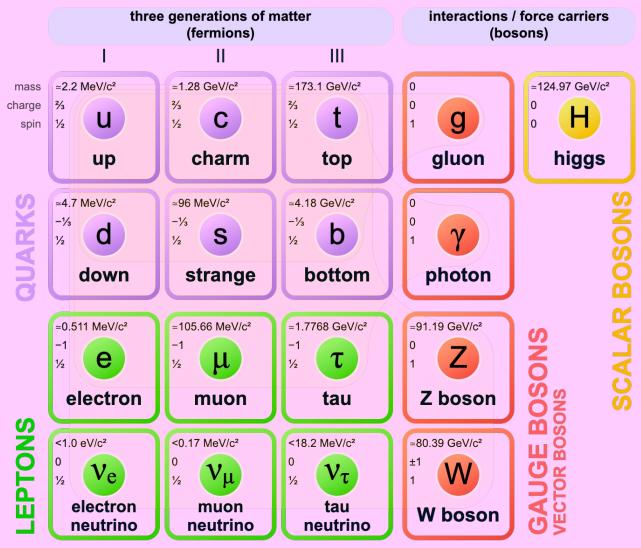
Content Overview	Assessment Overview		
 Content is split into six teaching modules: Module 1 – Development of practical skills in physics 	Modelling physics (01) 100 marks 2 hours 15 minutes written paper	37% of total A level	
 Module 2 – Foundations of physics Module 3 – Forces and motion Module 4 – Electrons, waves and photons 	Exploring physics (02) 100 marks 2 hours 15 minutes written paper	37% of total A level	
 Module 5 – Newtonian world and astrophysics Module 6 – Particles and medical physics Component 01 assesses content from modules 1, 2, 3 and 5. 	Unified physics (03) 70 marks 1 hour 30 minutes written paper	26% of total A level	
Component 02 assesses content from modules 1, 2, 4 and 6. Component 03 assesses content from all modules (1 to 6).	Practical Endorsement in physics (04) (non exam assessment)	Reported separately (see Section 5g)	



Silent Starter

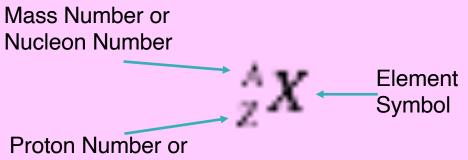
Silent Starter

Learning objectives Describe the standard model Explain the structure of particles


Key words: Quark Lepton Hadron Baryon Proton Neutron Electron

Any particle that contains quarks is a hadron.

A lepton is a fundamental particle

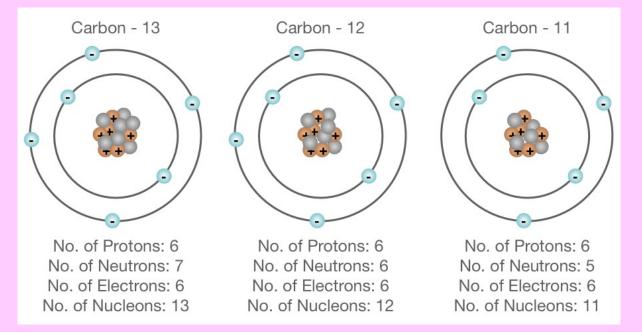


The Nucleus

The nucleus consists of protons and neutrons, which are collectively known as nucleons.

The following notation represents the nucleus of the atom:

Electrons Electrons Nucleons within positive nucleus


Proton Number or Atomic Number

Isotopes

An isotope is any of two or more forms of a chemical element. They have the same number of protons in the nucleus, but have different numbers of neutrons.

Constituents of the Atom

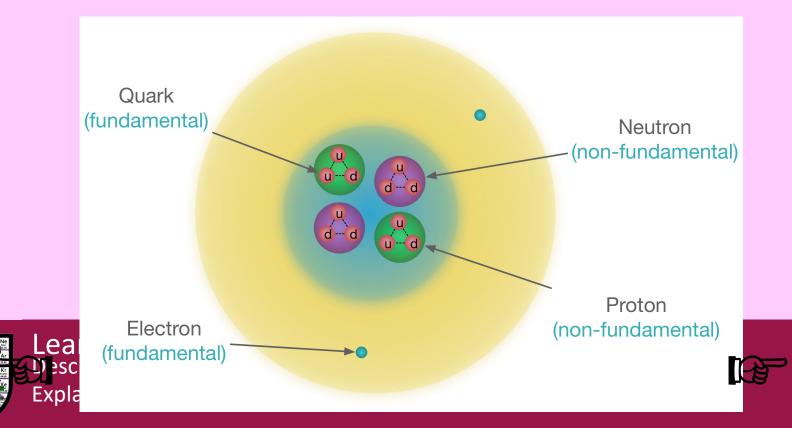
Proton

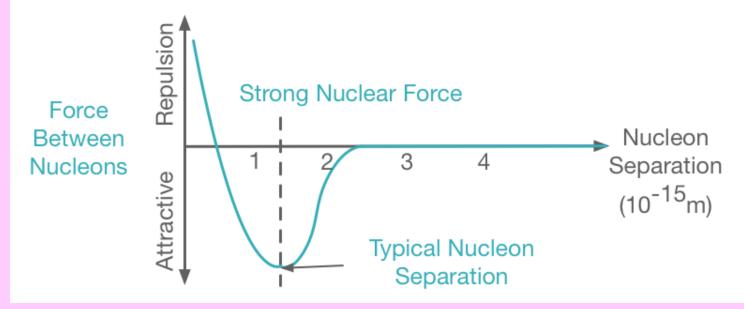
	Relative	SI Unit
Mass	1	1.673 x 10 ⁻²⁷ kg
Charge	1	1.6 x 10 ⁻¹⁹ C

Neutron

	Relative	SI Unit
Mass	1	1.675 x 10 ⁻²⁷ kg
Charge	0	0

Electron


	Relative	SI Unit	
Mass	0.0005	9.11 x 10 ⁻³¹ kg	
Charge	-1	-1.6 x 10 ⁻¹⁹ C	

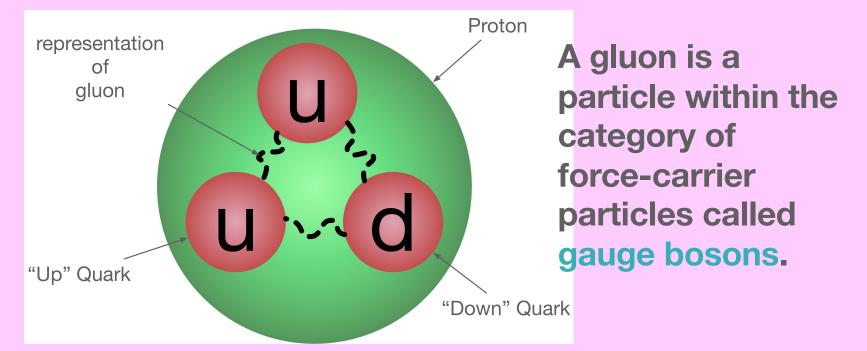

Fundamental Particles

Fundamental (elementary) particles are those which are not composed of other particles. The atom consists of fundamental and non-fundamental particles

Strong Force

The nucleus is held together by the strong force.

- Highly attractive between two protons within 1-2 femtometres
- Repulsive between two protons at smaller separations (cannot overlap)



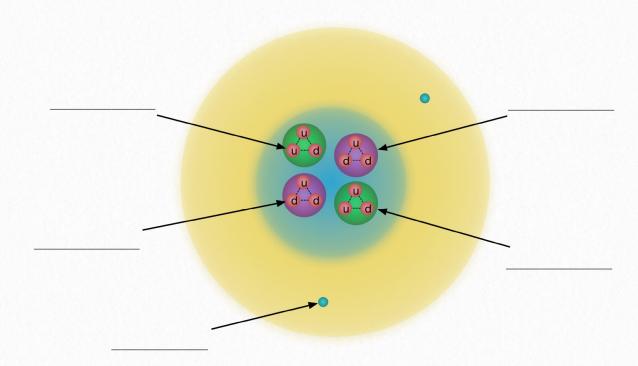
Explanation Exchange Particles

It is thought that exchange particles, called gluons, are responsible for the Strong Force. They act between the quarks in a neutron or proton.

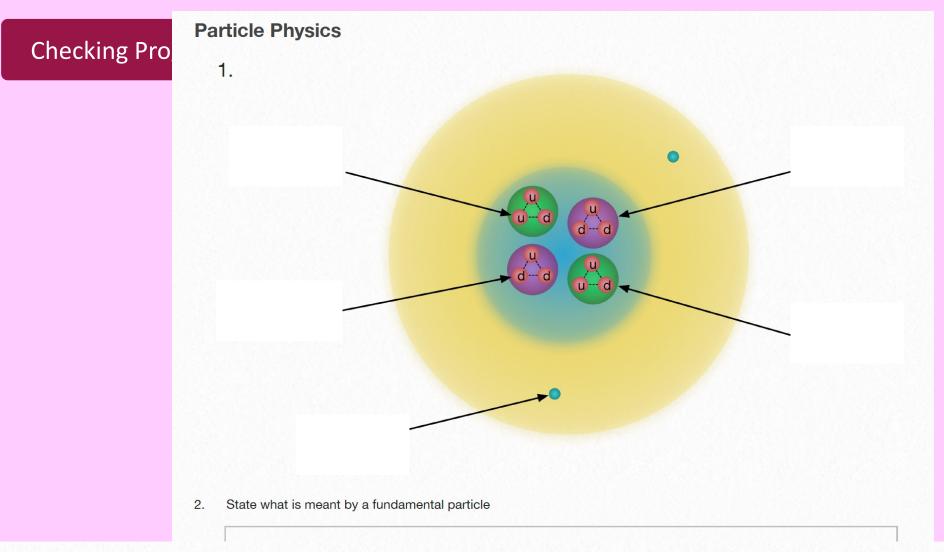
Explanation Four Fundamental Forces

There are four fundamental forces that act within a nucleus. Each is thought to have their own set of exchange particles, which "carry" the force:

Fundamental Force:	Acts On:	Exchange particles (gauge boson):
Strong	Quarks	Gluons
Gravitational		Gravitons (not yet observed)
Electromagnetic	All particles with charge	Photons
Weak	Leptons	W and Z Bosons

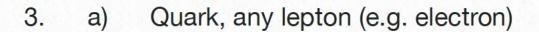


Complete the Questions

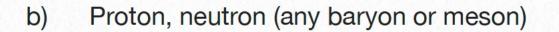

Particle Physics

1. Label the diagram of the particles within the atom below:

2. State what is meant by a fundamental particle



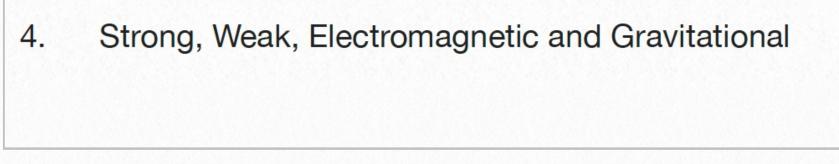
Fundamental (elementary) particles are those which are not composed of other particles.



Checking Progress

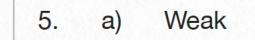
- 3. The particles within an atom can be divided into fundamental particles and non-fundamental particles.
 - a) Give two examples fundamental particles:

b) Give two examples of non-fundamental particles:

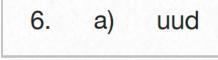


Questions Continued

Particle Physics


4. Name the four fundamental forces.

5. Two electrons approach each other but do not collide. They exert a force on each other and move apart.


a) Which of the four fundamental forces is involved in this process.

b) Name the exchange particle that plays a role in this interaction.

b) Photon (Gauge Boson)

- 6. State the quark composition of:
 - a) The proton

b) The neutron

7. A π^o particle is classed as a meson. It has a charge of 0 and a baryon number of 0. Using the quark table below, which of the following combinations could correspond to a π^o meson.

A.	sū			Quark	Charge
B.	udd	7.	С	u	+2/3
C.	$d\bar{d}$			d	-1/3
D.	иđ			S	-1/3

End & send

Expectations

- 1. Put the borrowed <u>equipment</u> back.
- 2. Bin all <u>rubbish</u>.
- 3. Put your belongings in your <u>bag</u>.
- 4. <u>Double check 1 to 3 has been done.</u>
- 5. <u>Stand</u> and <u>stay</u> behind your <u>chair silently</u>.

