Questions

Particle Physics

1. Label the diagram of the particles within the atom below:

0	01111		1 6	1 1 1	11 1
')	State what	ic maant	hw a tun	ndamantal	narticle
4.	DIGITE WHAT	13 HIGGH	DV a lul	IUallicillai	Dallicia

- 3. The particles within an atom can be divided into fundamental particles and non-fundamental particles.
 - a) Give two examples fundamental particles:

1993					
1000					
19.00					
1922					
1000					
100					

b) Give two examples of non-fundamental particles:

Questions Continued

Particle Physics

4.	Nam	ne the four fundamental forces.
5.	Two	electrons approach each other but do not collide. They exert a force on each other and move apart.
	a)	Which of the four fundamental forces is involved in this process.
	b)	Name the exchange particle that plays a role in this interaction.
5.	State	e the quark composition of:
	a)	The proton

- 7. A π^o particle is classed as a meson. It has a charge of 0 and a baryon number of 0. Using the quark table below, which of the following combinations could correspond to a π^o meson.
 - A. $s\bar{u}$

b)

The neutron

- B. udd
- C. $d\bar{d}$
- D. $u\bar{d}$

Quark	Charge			
u	+2/3			
d	-1/3			
S	-1/3			

Questions Continued

Particle Physics

- 8. An unstable nuclei undergoes radioactive emission to become more stable. Two possible decays are: β^- and β^+ decay. An isotope of carbon ${}^{14}_6C$ decays by beta emission into an isotope of nitrogen ${}^{14}_7N$. An isotope of magnesium ${}^{23}_{12}Mg$ decays by beta emission into an isotope of sodium ${}^{23}_{11}Na$.
 - a) Complete the following decay equations for the carbon and magnesium isotopes.
 - i. carbon decay (β^- emission where a neutron "turns into" a proton)

$$^{14}_{6}C \longrightarrow ^{14}_{6}N + e^- + \bar{\nu_e}$$

ii. magnesium decay (β^+ emission where a proton "turns into" a neutron)

$$^{23}_{12}Mg \longrightarrow Na + e^+ + \nu_e$$

- b) State the two beta decays in terms of a quark model of the nucleons.
 - i. beta-plus decay

ii. beta-minus decay

9. State why the following reaction is not possible

$$p + n \longrightarrow p + p + \bar{p}$$

Questions Continued

Particle Physics

10. A proton and an antiproton can annihilate each other, in this strong interaction:

$$p + \bar{p} \longrightarrow \pi^+ + x$$

Look at the conservation of charge, baryon number and lepton number to help suggest the identity of particle *x*.

11. A proton and anti-proton, each of energy $E = 4.52x10^{-10}J$, annihilate and produce two gamma photons.

$$E = 4.52x10^{-10}J$$

$$p$$

$$\bar{p}$$

$$E = 4.52x10^{-10}J$$

Calculate the wavelength of each gamma photon.

L				